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Abstract. We developed a complete self-consistent TB-LMTO-Augmented space recursion (ASR) method
for calculating configurational average properties of substitutionally disordered binary alloys. We applied
our method to fcc based Cu-Ni, Ag-Pd for different concentrations of constituent elements and body-
centered cubic based ferromagnetic Fe-V (50−50) alloy. For this systems we investigated the convergence of
total energy and l-dependent potential parameters, charges, magnetic moment, energy moments of density
of states with the number of iterations. Our results show good agreement with the existing calculations
and also with the experimental results where it is available. The Madelung energy correction due to the
charge transfer has also been included by the method developed by Ruban et al.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids – 71.23.-k Electronic
structure of disordered solids

1 Introduction

The study of electronic structure of disordered alloys is
of great scientific and technological importance. Theoreti-
cal approaches have achieved considerable success through
the development of mean-field approximations, the most
successful of which is the coherent potential approxima-
tion (CPA) [1]. Other techniques include super-cell ap-
proaches, attempted generalizations of the CPA and an
alternative order-N Green’s function technique [2]. The
former is based on the self-consistent determination of a
uniform medium to represent the substitutional alloy. The
corresponding effective Hamiltonian is lattice transition-
ally symmetric and its Green function is a good approxi-
mation of the configurational averaged Green function. Of
the later, the super-cell method is based on the study of
different selected ordered structures at various concentra-
tions. In these calculations a large unit cell is constructed
which contains different possible configurations and is re-
peated to generate the entire lattice. The result of such a
method contains the artifact of imposed lattice symmetry,
which is OK provided we concentrate on the local prop-
erties at the centre of the super-cell whose size is rather
large. There is no straight-forward rule for constructing
a super-cell and in realistic calculations it becomes com-
putationally expensive. A large number of generalizations
of the CPA are beset with analytical difficulties and their
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effective medium are often not translationally symmetric.
The only really successful generalization with analytic and
translational properties is the traveling cluster approxima-
tion of Leath et al. [3].

The method chosen by us is a marriage between the
augmented space theorem, proposed by one of us [4,5]
(AST) and the recursion method [6] carried out in a mini-
mal basis set of the tight-binding linear muffin-tin orbitals
method (TB-LMTO) [7–9] in which the Hamiltonian is
sparse. The AST states that the configuration average
of a well behaved function of a set of random variables
is a particular matrix element of the operator obtained
by replacing the random variables in the function by the
corresponding operators, whose spectral densities are the
probability densities of the random variables. The under-
lying space in which the operator is defined is the space
of all possible configurations of the random variables. For
example, if the set of random variables have binary dis-
tributions, then this configuration space is isomorphic to
the configuration space of a set of Ising spin-half objects.
The theorem is exact and approximations are introduced
only in the calculation of the matrix element. The recur-
sion method with a terminator approximation allows us
to take into account effects of random environments of a
site. The size of this environment depends upon the num-
ber of recursion steps we can carry out exactly and the far
environment is approximated by the terminator.

We shall present here a development of a code which
will seamlessly join with the Stuttgart TB-LMTO code for
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ordered materials to provide a self-consistent package for
the study of the electronic structure of random binary al-
loys. It will allow us to go beyond the usual single-site CPA
and include effects like short-ranged order [10,11], random
clustering [12] and local lattice distortion due to size mis-
match between the constituents [13]. Our code can also be
used to study alloy systems which are non-stoichiometric
and are only partially disordered [14] (for example only
one sub-lattice is disordered).

As an application of our codes we shall study face-
centered cubic based, paramagnetic AgPd and CuNi alloys
for various compositions and body-centered cubic based,
ferromagnetic 50−50 FeV. We shall calculate the atom-
projected and total density of states (DOS), total energy
and local magnetic moments on constituent atoms. We
have also analyzed the charge redistribution among differ-
ent orbitals in different constituents due to alloying. This
helps us in understanding the magnetic moment contri-
butions from m-resolved states of Fe and V in FeV. In
addition to this we have studied in detail the convergence
of the energy, moments, Fermi energy, potential parame-
ters as a function of number of iterations. We have also
studied the orbital resolved energy spectrum for the al-
loy constituents and the intra and inter atomic orbital
hybridization.

2 The TB-LMTO-ASR code structure

The TB-LMTO-ASR code consists of five modules, as
shown in Figure 1. Let us describe each of these modules
in some detail.

Module A: Inputs and Structure The input data
are provided in two control files ‘CTRLA’ and ‘CTRLB’.
These files are prepared for each constituent atom using
the initialization programmes of the standard TB-LMTO
package. However, the Wigner-Seitz radius for each con-
stituent is replaced by the radius averaged with concen-
tration weights:

rWS = xA rA + xB rB.

These radii and the symmetries provided are checked
by the subroutine ‘chksym’ provided by the TB-LMTO
package. The subsequent subroutine ‘strrs’ calculates the
structure matrices in the most tight-binding representa-
tion for the alloy lattice constant parameter.

The control files have additional informations as com-
pared with the standard TB-LMTO package: for example,
the concentration of the constituents, short-ranged order
parameter for cases where there is short-ranged order, a
flag which tells the subsequent program ‘strrs’ to calculate
different structure matrices corresponding to local lattice
distortion due to size mismatch (if it is required), con-
centrations of the constituents in different sub-lattices for
partial ordering.

In addition, the control files also carry the formation
required for the recursion programme: for example, the
number of recursion steps to be taken, the number and

position of the ‘seed’ energies and the type of terminator
to be used.

Module B: Calculations within a single atomic
sphere This module is taken directly from the Stuttgart
TB-LMTO programme. It calculates the spherical charge
density within an atomic sphere (AS). Then solving the
Poisson equation obtains the Hartree part of the poten-
tial within that AS. It adds one of the chosen forms of the
exchange-correlation potential and iterates the ‘atomic’
like calculations to self-consistency. After this it also cal-
culates the one-atom contribution to the total energy and
the muffin-tin zero for all different types of AS.

Module C: Potential parameters for different
atoms This module is also taken directly from the
Stuttgart TB-LMTO programme. It takes the input from
Module B and calculates the potential parameters for dif-
ferent atoms sitting within different AS.

Module D: The ASR module This is the main contri-
bution of this work. This module replaces the usual Bloch
Theorem based band structure calculations via reciprocal
space, by the augmented space method. Before we dis-
cuss the features of this module, we shall introduce the
methodology first for the case where there is no short-
ranged ordering, local lattice distortions and the disorder
is homogeneous:

The Augmented space theorem coupled with the re-
cursion method [15] form a basis for calculating local
electronic structure properties of disordered alloys in real
space [16,17]. As it is known that a localized tight-binding
basis set is required for implementing recursion method,
one can perform recursion based calculation in the frame
work of the TB-LMTO. In our case we have used the sec-
ond order TB-LMTO Hamiltonian:

H(2) = Eν + h − hoh (1)

where,

h =
∑

RL

(CRL − EνRL) PRL

+
∑

RL

∑

R′L′
∆

1/2
RL SRL,R′L′ ∆

1/2
R′L′ TRL,R′L′

o =
∑

RL

oRL PRL (2)

– C, o and ∆ are potential parameters of the TB-LMTO
method, these are diagonal matrices in the angular mo-
mentum indeces and they are derived self-consistently
from a first principle theory. o−1 has the dimension of
energy and is a measure of the energy window around
Eν around which the approximate Hamiltonian H(2) is
reliable. These ‘local’ random variables can be written
in terms of local occupation numbers nR for, say, the
A atom, e.g. CRL = CA

L nR + CB
L (1 − nR).

– R denotes atomic position label associated with a TB-
LMTO basis and L = (�mms) is the composite angular
momentum index.
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Fig. 1. The self-consistent TB-LMTO-ASR code structure.

– SRL,R′L′ is called structure matrix, which depends
only on the geometry of the underlying lattice. In the
absence of local distortions, this is not random.

– PRL and TRL,R′L′ are the projection and transfer op-
erators in Hilbert space H spanned by tight-binding
basis {|RL〉}:
PRL = |RL〉〈RL| and TRL,R′L′ = |RL〉〈R′L′|.

The Augmented space method associates with the ran-
dom variables nR, a set of operators MR whose spectral
densities are the probability densities of the variables. For
a binary distribution of the nR:

MR = xAP↑
R + xBP↓

R +
√

xA xB

{
T ↑↓

R + T ↓↑
R

}
. (3)

The Augmented space Hamiltonian is obtained by re-
placing the random variables by their corresponding op-
erators. The theorem states then that a matrix element of
the Green function of this Hamiltonian is the configura-
tion averaged Green function. It was shown in [18] that we
may write the expression for a partially averaged Green
function (averaged over all sites except a particular R)

〈GRL,RL(E)〉 =
〈

1|
[
EÎ − Ĥ

]−1

|1
〉

where Ĥ = PR H(2) PR + (I − PR) H̃ (I − PR)

and H̃ = Â − B̂ − F̂ + Ŝ −
(
Ĵ + Ŝ

)
ô
(
Ĵ + Ŝ

)
.

(4)
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If we label a ‘configuration state’ by the set of positions
where a ↓ sit (called the cardinality sequence), then

|1〉 =

{
AL

(
∆−1/2

)

[AL(1/∆)]1/2

}
|R, L,⊗{∅}〉

+ . . .

{
FL

(
∆−1/2

)

[AL(1/∆)]1/2

}
|R, L,⊗{R}〉 (5)

and,

Â =
∑

R,L,

{
AL (C/∆)
AL (1/∆)

}
PR, ⊗ PL ⊗ I

B̂ =
∑

R,L,

{
BL ((E − C) /∆)

AL (1/∆)

}
PR, ⊗ PL ⊗ P↓

R

F̂ =
∑

R,L,

{
FL ((E − C) /∆)

AL (1/∆)

}
PR, ⊗ PL ⊗

(
T ↑↓

R + T ↓↑
R

)

Ŝ =
∑

RL

∑

R′L′

{
AL (1/∆)−1/2

}
SRL,R′L′

{
AL (1/∆)−1/2

}

. . . TR,R′ ⊗ TLL′ ⊗ I

here, Ĵ = ĴA + ĴB + ĴF and ô = ôA + ôB + ôF , where,

ĴA =
∑

R,L,

{
AL ((C − Eν) /∆)

AL (1/∆)

}
PR, ⊗ PL ⊗ I

ĴB =
∑

R,L,

{
BL ((C − Eν) /∆)

AL (1/∆)

}
PR, ⊗ PL ⊗ P↓

R

ĴF =
∑

R,L,

{
FL ((C − Eν) /∆)

AL (1/∆)

}
PR, ⊗ PL ⊗

(
T ↑↓

R + T ↓↑
R

)

ôA =
∑

R,L,

{AL (õ)AL (1/∆)}PR, ⊗ PL ⊗ I

ôB =
∑

R,L,

{BL (õ)AL (1/∆)}PR, ⊗ PL ⊗ P↓
R

ôF =
∑

R,L,

{FL (õ)AL (1/∆)}PR, ⊗ PL

(
T ↑↓

R + T ↓↑
R

)

where,

AL(Z) = xA ZA
L + xB ZB

L

BL(Z) = (xB − xA)
(
ZA

L − ZB
L

)

FL(Z) =
√

xAxB

(
ZA

L − ZB
L

)

Z is any single site parameter.
In order to couple with TB-LMTO the module does

the following operations:

– The input are the initial potential parameters obtained
from the Module C.

– Using the potential parameters and the input concen-
trations, we set up the effective ‘Hamiltonian’ (3) and
the starting state (4). Note that the effective ‘Hamil-
tonian’ is energy dependent. We choose a set of seed

energies {Es} across the expected spectrum and carry
out a three term recursion to obtain the recursion co-
efficients at the seed energies:

|1〉 = |RL〉 |0〉 = 0

for

n ≥ 1 |n+1〉 = Ĥ(Es)|n〉−αn(Es)|n〉−β2
n(Es)|n−1〉

αn(Es) =
〈n|Ĥ |n〉
〈n|n〉 β2

n(Es) =
〈n + 1|n + 1〉

〈n|n〉 .

Then,

〈
G

A/B
RL,RL(z)

〉
=

1

z − α1 − β2
1

E − α2 −
β2

2

E − α3 − . . .
(6)

This operation is carried out by the subroutine
‘recur’ and the output is a set of coefficients
{αn(Es), βn(Es)}. This is input into a fitting pro-
gramme ‘fit’, which, assuming that the variation of the
coefficients is weak across the band spline fits the co-
efficients at 800 energy points across the spectrum.

– Using these coefficients up to a number n, we now con-
struct the terminator of the continued fraction. We
have the flexibility to use a square-root, a Luchini-
Nex [19] or a Beer-Pettifor [20] terminator. Once the
terminator is formed using the routine ‘terminator’ the
partial density of states and the total density of states
are obtained as follows:

n
A/B
L = − 1

π
�m

〈
G

A/B
RL,RL

(
E + i0+

)〉

and

n(E) =
∑

L

[
xA nA

L(E) + xB nB
L (E)

]
.

These are carried out by the subroutines ‘density’ and
‘totdos’.

– The Fermi energy, band energy and the energy mo-
ments are calculated as follows:

∫ EF

−∞
dEn(E) = xA nA + xB nB

∫ EF

−∞
dEE n(E) = EB

∫ EF

−∞
dE(E − Eν)k nL(E) = µk

L. (7)

These are obtained within the routine ‘pardos’. In ad-
dition the total charge in an atomic sphere is also
calculated.

– If we wish to introduce short-range order through the
Warren-Cowley parameter α, the expression for the
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augmented space operator in (3) for the sites R′ neigh-
bouring the central site R becomes [10,11]:

MR′ = xAP↑
R ⊗ P↑

R′ + xBP↑
R ⊗ P↓

R′

. . . +
{

(1 − α)xA + αxB

}
P↓

R ⊗ P↑
R′

+
{
αxA + (1 − α)xB

}
P↓

R ⊗ P↓
R′ . . .

. . . +
{

B1P↑
R + B2P↓

R + B3P↑
R′ − B3P↓

R′

+B4

(
T ↑↓

R + T ↓↑
R

)}
⊗

(
T ↑↓

R′ + T ↓↑
R′

)
(8)

where

B1 = xA

√
(1 − α)xB(xA + αxB)

+ . . . xB

√
(1 − α)xA(xB + αxA)

B2 = xB

√
(1 − α)xB(xA + αxB)

+ . . . xA

√
(1 − α)xA(xB + αxA)

B3 = α
√

xAxB

B4 =
√

xAxB

(
xB

√
(1 − α)xB(xA + αxB) . . .

. . . − xA

√
(1 − α)xA(xB + αxA)

)
.

– In case we wish to introduce local lattice distortion,
then, for an end-point approximation, the expression
for the structure matrix in (2) is replaced by [13]:

SBB
RL,R′L′ + (nR + nR′)S(1)

RL,R′L′ + nRnR′S
(2)
RL,R′L′ (9)

where
S

(1)
RL,R′L′ = SBB

RL,R′L′ − SAB
RL,R′L′

S
(2)
RL,R′L′ =SAA

RL,R′L′ + SBB
RL,R′L′ − SAB

RL,R′L′ − SBA
RL,R′L′ .

Since the local distance between AA, BB and AB are
different when there is a local lattice distortion, the
three structure matrices are calculated separately.

– Finally, we estimate the Madelung potential and en-
ergy. Since the constituents atoms in an alloy are differ-
ent, there should be charge transfer between them. On
alloying neutral atomic spheres may become charged,
as a result there will be a significant contribution
of a Madelung energy. Although, evaluation of this
Madelung energy is quite straightforward for ordered
alloys, no completely satisfactory method for its calcu-
lation in disordered alloys. For a mean-field coherent
potential approach, which is equivalent to an isomor-
phous model, Kudrnovský and Drchal [21] have sug-
gested using different atomic radii for the constituents
in such a way that average total volume is conserved
and the overlap is below our threshold value (15%),
we can make these spheres approximately neutral and
therefore ignore the Madelung contributions. Not only
is the procedure varying the ratio r = RA/RB (Ra

is the atomic sphere radii) very cumbersome, Ruban
and Skriver [22] have shown that local environmental

effects (beyond the CPA) destroys the strict charge-
potential alignment, and hence the possibility of choos-
ing electroneutral atomic spheres by a single ratio r.
In this development we have chosen rather to follow
the procedure of Ruban and Skriver [22] and define a
one-electron potential:

Vi = −Qi

Ra

where, i = A or B (labels the constituents of the alloy),
Qi is the net charge of the alloy component i in its own
atomic sphere of radius Ra and is a screening param-
eter, which we vary arbitrarily according to our needs
without specifying its physical meaning. We note that
= −∞ corresponds to the electro-neutral case (Qi=0),
while = 0 to the limit where there is no response of
the system to charge transfer effects. The Madelung
energy is then given by:

EMadelung =
QiQj

Ra
.

Note that in this approach we use a single averaged
atomic radius 〈Ra〉 for both the components.

Thus the Module D has as outputs the following: The
L-dependent energy moments in the most tight-binding
representation, the charges in different atomic spheres, the
Madelung potentials, the centre-of gravity of the bands
and, if it is a magnetic calculation, then the magnetic
moment associated with different atomic spheres.

Within this module we have kept an option which
switches from the simple ASR-code to one (SRO-ASR)
which includes the effect of short-ranged order [10,11].
We may also switch from the simple ASR-code to one in
which the effects of size mismatch is taken into account
within a end-point approximation [13]. These switches are
additional switches available in the CTRL files.

Module E: Change of representation and mixing
This last module changes the moments from the most
tight-binding to the orthogonal representation, shifts the
Eν to the centre of the bands and mixes all output
with their original in-out values using a linear mixing. At
present only linear mixing has been used, as we found dif-
ficulties of convergence with non-linear mixing.

The procedure is iterated to the desired accuracy in
the total energy, atomic sphere charges and (in case of
magnetic alloys) also local magnetic moments. On conver-
gence the output gives us the partial and total density of
states, the Fermi energy, the total energy, the magnetic
moments, charge and moment distributions within the
atomic spheres and the converged potential parameters.

3 Some applications

3.1 The 50–50 FeV ferromagnetic binary alloy

The Figure 2 shows the Fe and V projected density of
states for a 50−50 FeV body-centered cubic (bcc) alloy.
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The calculation was carried out within a local spin den-
sity approximation (LSDA), with the initial spin resolved
charges given to be different for both Fe and V atomic
spheres.

Figures 3 and 4 shows how the orbital projected
charges and magnetic moments in the Fe and V atomic
spheres converge with the number of iterations of the self-
consistency cycle. We notice that although the conver-
gence of the charges is rather fast, the moment conver-
gence is comparatively slower. This has prompted us to
put an additional convergence criterion for the magnetic
moment in our Module E.

Decrease in saturation magnetization of Fe when it is
alloyed with 3d elements like V has been observed exper-

imentally. Here we analyze how this alloying affects the
Fe and V projected density of states and the charge re-
distribution mechanism which results in suppression of Fe
magnetic moment in the alloy. Table 1 shows the con-
verged orbital projected charge and magnetic moment of
Fe and V in a 50−50 FeV alloy. We observe charge transfer
from V to Fe by an amount 0.31 as compared to the pure
bulk Fe. But the spin up band in Fe in the alloy looses
0.41 amount of charge compared to bulk, whereas the mi-
nority band gains 0.72 amount of charge. If the excess
charge from V went entirely to the minority band, then
the magnetic moment would have been 1.94. However,it
is the intratomic charge transfer from majority to minor-
ity band which further lowers the magnetic moment by
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Table 1. The orbital resolved charges in Fe and V atomic spheres in FeV alloy. A comparison is shown for bulk pure Fe.

Fe in 50−50 FeV alloy

s p t2g eg Total Charge Net Magnetic moment of FeV

Spin up 0.37 0.42 2.34 1.58 4.72

Spin down 0.36 0.44 1.88 0.92 3.60 1.12

V in 50−50 FeV alloy

Spin up 0.28 0.29 1.72 2.29

Spin down 0.29 0.33 1.77 2.39 −0.11

Pure Fe

Spin up 0.32 0.37 2.56 1.88 5.12

Spin down 0.33 0.42 1.50 0.63 2.88 2.25

0.82. The picture here is more interesting because though
the majority band of FeV in the alloy has lost charge but
its s and p sub-bands have gained compared to pure Fe.
This interesting interplay between orbitals and the conse-
quent charge transfer has been captured by our analysis.
Our magnetic moment of Fe in FeV alloy matches well
with experimental observations [23]. Previous theoretical
calculations [24] were comparatively inaccurate.

3.2 AgxPd1−x and CuxNi1−x paramagnetic binary alloys

Next, we choose to study the two alloy systems AgPd and
CuNi for the following reasons:
– Both alloys remain face-centered cubic solid solutions

throughout the concentration range. There is very lit-
tle size mismatch between the constituents in either
system. The disorder is then dominated by the diago-
nal terms in the Hamiltonian.

– Both systems have been extensively studied earlier
through the CPA formalism. We may therefore be able
to compare our results with them. Moreover, for both
systems the d-band centers of the constituents are well
separated. In such alloys, particularly in the dilute
regime, one expects environmental and cluster effects
to be important. Our TB-LMTO-ASR should be able
to capture this.

– Since in this work we have incorporated the charge
transfer effect, and there exist controversy regarding
the direction and nature of charge transfer in this al-
loys, we tried to shed light on this matter.

The general features are as follows:

– The structure in DOS mainly comes from the 4s-5d
electron in Ag and Pd. For small concentration of Pd
in Ag, the Pd impurity forms a level half-way between
the top of host Ag d-band and Fermi energy. As the Pd
concentration is increased the impurity band widens,
while the Ag band loses its structure due to disorder
scattering. On the other hand as Pd concentration goes
beyond 50%, its shape approaches that of pure Pd and
Ag forms a impurity level below the Pd d-band. This is
clearly seen in Figure 5. The DOS agrees closely with
the CPA results of Kudrnovský and Drchal [21] and
earlier work of Saha, Dasgupta and Mookerjee [12].
The same feature has also been observed for CuNi sys-
tem [25], as seen in Figure 6. It is also a split band type
of alloy. For larger concentration of one constituent,
the other forms a impurity band and the former ap-
proaches the shape of pure metal. This is character-
istic of alloys whose constituents have well separated
bands. All these features have been confirmed by ear-
lier studies.



28 The European Physical Journal B

-0.8 -0.6 -0.4 -0.2 0
0

10

20

30

40

-0.8 -0.6 -0.4 -0.2 0
0

10

20

30

40

-0.8 -0.6 -0.4 -0.2 0
0

10

20

30

40

50

-0.8 -0.6 -0.4 -0.2 0
0

10

20

30

40

50

D
O

S
(S

ta
te

s/
R

yd
.)

Energy(Ryd.)

Ag25Pd75

Ag75Pd25

Ag50Pd50

Ag80Pd20
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Table 2. Orbital resolved charges in the atomic spheres for (top) AgPd alloys and (bottom) CuNi alloys.

Agx Pd1−x

x s p d Total Charge s p d Total Charge

0.0 0.61 0.67 8.72 10.0

0.25 0.70 0.70 9.53 10.93 0.63 0.64 8.75 10.02

0.50 0.70 0.66 9.58 10.93 0.62 0.60 8.85 10.07

0.75 0.70 0.67 9.59 10.96 0.61 0.60 8.90 10.11

0.80 0.70 0.66 9.60 10.96 0.62 0.60 8.93 10.15

1.0 0.69 0.66 9.65 11.00

Cux Ni1−x

x s p d Total Charge s p d Total Charge

0.0 0.65 0.76 8.60 10.00

0.20 0.74 0.80 9.44 10.98 0.68 0.74 8.59 10.00

0.25 0.73 0.82 9.42 10.98 0.68 0.76 8.58 10.01

0.30 0.74 0.80 9.44 10.98 0.68 0.74 8.60 10.01

0.40 0.74 0.80 9.46 10.98 0.67 0.73 8.61 10.02

0.50 0.73 0.79 9.46 10.98 0.67 0.72 8.63 10.02

0.60 0.73 0.78 9.47 10.98 0.67 0.72 8.64 10.03

0.75 0.73 0.78 9.46 10.98 0.66 0.73 8.66 10.06

0.9 0.73 0.76 9.50 10.99 0.66 0.70 8.72 10.08

1.0 0.70 0.75 9.56 11.0

– Recently Coulthard and Sham [26] made a detailed ex-
perimental study of character and direction of charge
transfer in AgPd alloy. According to their result, both
Pd and Ag gain d- charge and lose non d-charge com-
pared with pure metals. The result shows that the net
charge transfer to be from Ag to Pd. Other experi-
ments also support the fact that Pd site gains more
d-charge with increasing Ag content. Here, we carried
out detail orbital resolved study of charge transfer ef-
fect in AgPd alloy, for different concentration of con-
stituents. Our result reveal that:

– Net charge transfer in this alloy is from Ag to Pd
(Tab. 2), which is in agreement with electronegative ar-
guments and also confirmed by previous experiments.

– The Pd site gains more d-type charge with increasing
Ag concentration, as confirmed by the experiment. But
the charge transfer character of non d-type charges is
not simple. We observe that at 75% Pd concentration,
Ag loses 0.04 amount of p-charge and 0.03 of s-charge
from the value of pure Ag. For most concentrations
there is negligible transfer from these orbitals.

– The Ag-site loses d-type charge with increase in Pd
concentration, this observation is in contradiction to

the experimental observation of Coulthard and Sham.
But this is in support of the theoretical work done by
Kokko et al. [27]. The character of non-d charges is
not monotonic, but they are such that at each concen-
tration the net charge transfer is from Ag to Pd.

– The same trend has also been observed for CuNi al-
loys [28], with the net charge transfer from Cu to Ni
(Tab. 2). The Cu/Ni site loses/gains d-type charge
with increase in Ni/Cu concentration. The non d-
charges in this alloy are such that they maintain the
direction of net charge transfer (Cu to Ni) through out
the concentration range.
In Figure 7 and in Figure 8 we show the convergence

of the orbital resolved charges in the Ag and Pd atomic
spheres of AgPd(50−50) alloy and Cu and Ni atomic
spheres in CuNi(20 − 80) alloy respectively. It is impor-
tant to note that the charges converge quite rapidly with
self-consistency iterations. This is because objections have
often been raised about the convergence and stability of
the recursion method used as the basic tool for calculat-
ing these quantities. Figure 9 shows the convergence of
the first two moments of the charge distribution for AgPd.
The convergence is not monotonic, but nevertheless within
our error bar for more than 100 iteration steps. Ordinary
linear mixing has been used for both alloys.
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